Natural Resources Ressources naturelles Canada Canada

NATURAL RESOURCES CANADA - INVENTIVE BY NATURE

Ressources naturelles Canada Natural Resources Canada

GÉOLOGIE DU GISEMENT DE TYPE SMV-AU HORNE 5, ABITIBI, QUÉBEC

Alexandre Krushnisky (INRS-ETE) Patrick Mercier-Langevin (CGC-Québec) Pierre-Simon Ross (INRS-ETE) Vicki McNicoll (CGC-Ottawa) Jean Goutier (MERN) Lyndsay Moore (U. McGill) Claude Pilote (Ressources Falco) Claude Bernier (Ressources Falco)

Forum technologique CONSOREM-DIVEX Val d'Or, 29 mai 2018

Énergie et Ressources naturelles Québec 🏘 🕸

Natural Resources Ressources naturelles Canada Canada

NATURAL RESOURCES CANADA - INVENTIVE BY NATURE

Contenu

- 1. Introduction
- 2. Problématique et objectifs
- 3. Contexte géologique régional
- 4. Résultats
 - Roches encaissantes et lithogéochimie
 - Altération hydrothermale
 - Minéralisation
- 5. Modèle préliminaire et conclusion

Projet de maîtrise en cours (INRS-ETE)

Projet Or de l'Initiative géoscientifique ciblée, Commission géologique du Canada (CGC)

L'or syngénétique à l'Archéen

(sous-problématique)

Introduction

- Gisement Horne : SMV le plus important au monde en terme de contenu total en or
- 3 zones principales : *Upper* H, *Lower* H et <u>Horne 5</u>
- 1927-1976 : 53,7 Mt à 6,06 g/t Au --- 325,4 t Au (Upper H et Lower H)
- Horne 5 : 112,7 Mt à 2,55 g/t AuEq --- 172,6 t Au (ressources oct. 2017)
- Contenu total en or de 498,0 t (16 millions d'onces), ce qui en fait un gisement d'or de classe mondiale

Problématique et objectifs

- Style et teneurs très différents de Upper et Lower H
- Cependant, rapport Au/(Cu+Zn) élevé (1,5 pour Horne 5)
- Cas d'étude idéal pour étudier les processus d'enrichissement en or dans les sulfures massifs

Objectifs:

- 1. Vérifier timing synvolcanique de l'or à Horne 5
- 2. Documenter la géologie des zones minéralisées du gisement Horne 5.
- 3. Établir la relation entre l'or, les sulfures, les roches encaissantes, l'altération, la déformation et le métamorphisme.
- 4. Définir les contrôles sur la distribution de l'or à diverses échelles et établir un modèle pour l'ensemble du gisement.

Ouébec 🗄 🗄

Contexte géologique – Groupe de Blake River (2704-2695 Ma)

Tirée de Mercier-Langevin et al. (2011b)

Énergie et Ressources naturelles Québec 😫 😫

Géologie du bloc de Horne

Rhyolite (éponte inf.)

Tuf felsique

1 cm

Intrusion felsique synvolcanique

Peperite

2 cm

Intrusion

Tuf felsique à lapillis (éponte sup.)

Lithogéochimie des roches encaissantes

▼ ▽ Footwall rhyolite

Lithogéochimie des roches encaissantes

- ▼ ▽ Footwall rhyolite
- ► ♦ Footwall dacite-rhyodacite
- O Horne 5 dacite-rhyodacite
- Hanging wall dacite-rhyodacite
- ▲ △ Felsic shallow intrusion

Résumé : volcanologie et géochimie

- Mise en place des roches volcanoclastiques felsiques : fragmentation de coulées/dômes et accumulation dans un bassin synvolcanique (coulées de débris)
- Roches felsiques de Horne 5 : dacites-rhyodacites transitionnelles à calco-alcalines
- Volcanisme bimodal, mais plus grande proportion de roches felsiques comparativement au Camp central
- Mise en place des dykes mafiques durant la fin de l'activité hydrothermale (faiblement altérés, contacts irréguliers)

Altération hydrothermale

Distribution de l'altération (forage H5-15-05)

Zone de faille

Zone minéralisée Horne 5

Assemblages de sulfures

- Types de minéralisations:
 - Sulfures disséminés et en filonets
 - Lentilles de sulfures semimassifs à massifs
 - Fragments de sulfures massifs
- Pyrite-sphaléritechalcopyrite ± magnétite
- Phases accessoires: pyrrhotite, galène, stannite, tellurures (Pb, Ag, Au, Bi), électrum

Énergie et Ressources naturelles Québec 😫 😫

Filonet de sulfures partiellement transposé

Fragment de sulfures massifs

Sulfures massifs par remplacement

Sulfures riches en zinc

Géochimie des sulfures (roche totale)

Géochimie des sulfures (roche totale)

ACP des éléments traces contenus dans les sulfures massifs:

- Groupe Au-Cu-Te: minéralisation à chalcopyrite-tellurures
- Groupe Zn et éléments associés: minéralisation à sphalérite
- Ag associé avec les groupes Au-Cu et Zn

Distribution des métaux à très petite échelle

Py1 = pyrite primaire partiellement préservée

Py2 = pyrite recristallisée

*Cartographie par LA-ICP-MS pleinement quantitative résultant de lignes successives d'analyses ponctuelles avec couverture à 100%

Distribution des métaux en forage

Profil stratigraphique du forage H5-15-08:

- Minéralisation surtout concentrée dans les unités volcanoclastiques grossières (tufs à blocs)
- Mise en place sous le fond marin, par remplacement des roches felsiques encaissantes (fragments reliques)
- Présence de tufs fins ou d'intrusions felsiques synvolcaniques au-dessus des zones minéralisées = barrière aux fluides hydrothermaux ascendants

Distribution de l'or à grande échelle

Section N-S (647700 m.E.)

- La minéralisation aurifère est distribuée le long des lits subverticaux de roches volcanoclastiques et est restreinte à l'enveloppe sulfurée
- L'or est aussi affecté par la schistosité est-ouest (remobilisation locale à l'intérieur de l'enveloppe sulfurée)
- Relation entre Lower H et Horne 5 (contact primaire ou structural toujours à l'étude mais études antérieures suggèrent la présence de failles dans les zones U/L H)

Vue en plan – 1180 m de profondeur

Distribution de l'or à grande échelle

Section N-S (647700 m.E.)

- La minéralisation aurifère est distribuée le long des lits subverticaux de roches volcanoclastiques et est restreinte à l'enveloppe sulfurée
- L'or est aussi affecté par la schistosité est-ouest (remobilisation locale à l'intérieur de l'enveloppe sulfurée)
- Relation entre Lower H et Horne 5 (contact primaire ou structural toujours à l'étude mais études antérieures suggèrent la présence de failles dans les zones U/L H)

Vue en plan – 1180 m de profondeur

NATURAL RESOURCES CANADA - INVENTIVE BY NATURE

Âge relatif de la minéralisation aurifère

- 1. Fragments de sulfures massifs porteurs d'or (teneurs similaires à SMV)
- 2. Textures primaires des sulfures partiellement préservées riches en or et autres métaux traces
- 3. Distribution de l'or concorde très bien avec l'enveloppe sulfurée suggérant un effet limité de la déformation superposée
- 4. Absence de couloirs de déformation riches en or s'étendant au-delà de la lentille
- 5. Absence de veines de quartz porteuses d'or typiques des systèmes associés à la déformation principale

ORIGINE SYNVOLCANIQUE

Natural Resources Ressources naturelles Canada Canada

NATURAL RESOURCES CANADA - INVENTIVE BY NATURE

Modèle préliminaire

NATURAL RESOURCES CANADA - INVENTIVE BY NATURE

Conclusions

Gisement Horne 5:

- Sulfures encaissés dans des roches volcanoclastiques (dacite-rhyodac.) transitionnelles à calco-alcalines
- Entouré d'une enveloppe étendue et diffuse d'altération à séricite = système hydrothermal de grande envergure
 - Concorde bien avec la minéralisation (basses teneurs et haut tonnage)
 - Zones locales d'altération de plus forte intensité (focalisation des fluides)
- Associations Au-Cu-Te et Zn-Cd : modélisation 3D en cours pour mieux comprendre l'architecture et l'évolution du système hydrothermal

NATURAL RESOURCES CANADA - INVENTIVE BY NATURE

Remerciements

- Ressources Falco Ltée. pour l'accès à l'information sur le gisement Horne 5, aux carottes de forage et à leur base de données
- InnovExplo pour avoir partagé plusieurs figures et leur compilation des données historiques
- Simon Jackson et Zhaoping Yang (LA-ICP-MS)
- Marc Choquette (Microsonde, U. Laval)
- Arnaud De Coninck (MEB, INRS)

